

Pergamon Tetrahedron Letters 42 (2001) 2681–2684

TETRAHEDRON LETTERS

Quantitative solvent extraction from neutral aqueous nitrate media of silver(I) against lead(II) with a new calix[4]arene-based bipyridine podand

Jean-Bernard Regnouf-de-Vains,^{a,*} Jean-Olivier Dalbavie,^b Roger Lamartine^b and B. Fenet^c

a *GEVSM*, *UMR* 7565 *CNRS*-*UHP*, *Faculte´ de Pharmacie*, ⁵ *rue Albert Lebrun*, *F*-54001 *Nancy Cedex*, *France* b *ROMB*, *ESA* 5078 *du CNRS*, *La Doua*, *F*-69622 *Villeurbanne Cedex*, *France* c *Centre Commun de RMN*, *UCBL*, *La Doua*, *F*-69622 *Villeurbanne Cedex*, *France*

Received 15 February 2001

Abstract—A new calix^[4]arene-based podand incorporating two 2,2'-bipyridine and two benzyl units in alternate positions at the lower rim was shown to quantitatively extract silver(I) from neutral aqueous solutions containing a mixture of lead and silver nitrates. The corresponding $AgPF_6$ complex was synthesised and characterised. \odot 2001 Elsevier Science Ltd. All rights reserved.

The recovery of silver from ores and wastes is of interest only if the process is economically viable.¹ Therefore, it may be interesting to design ligands capable of selective binding and extraction of the Ag^+ cation. However, a further step is needed, allowing by a decomplexation process, to regenerate the ligand on one hand, and to isolate the metal on the other hand. This may be achieved using chemical, hydrometallurgical or electrolytical processes.

Calixarenes have been widely used as spatial organisers for various chelating units, 2 e.g. ethers, esters, amides

or their thio analogues, ketones, alkenes, ammoniums, amino acids, thiols, phosphine groups or heterocycles. Furthermore, the binding as well as the extraction ability of some of these ligands towards rare^{2b} or toxic³ metals have also been reported.

The liquid extraction of $Ag⁺$ by some of the abovementioned calixarene derivatives⁴ has been studied in the presence of alkaline ions and, in some rare cases, in the presence of transition metal cations.^{4b,4c} However, to the best of our knowledge, the extraction ability of calixarenes bearing bis-heterocycles has not yet been

Scheme 1.

^{*} Corresponding author. Fax: (33) 3 83 17 90 57; e-mail: jean-bernard.regnouf@pharma.u-nancy.fr

⁰⁰⁴⁰⁻⁴⁰³⁹/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $$0040-4039(01)00262-3$

Figure 1. ¹H NMR spectra of **1** (a), **2**-PF₆ (b); CDCl₃, 500 MHz, rt.

investigated. Calix[4]arene podands incorporating at the lower rim two opposed $2,2'$ -bipyridine units give stable and hydrophobic mononuclear Cu^{+} complexes,⁵ which, based on an X-ray crystal structure analysis, $5c$ display a pro-helicoidal tetrahedral geometry. Since $Ag⁺$ adopts a pseudo-tetrahedral geometry with 2,2'bipyridine and analogues, 6 we assumed that this geometry could also be obtained with such podands, allowing thus selective complexation of $\mathbf{A}g^+$ with respect to other cations. Owing to the stability and lipophilicity of such complexes, one may expect an interesting extraction ability for these podands. Following these ideas, the ligand 1 described here with its silver complex 2 -PF₆, was investigated for its extraction properties in the presence of Ag^+ and Pb^{2+} cations.

Ligand **1** was prepared in 71% yield by alkylation of the bis-bipyridyl podand A^{5b} with benzyl chloride in the presence of NaH in dry DMF (Scheme 1). The pure air-stable white–silver complex 2 -PF₆ was obtained in 92% yield after chromatography (AI_2O_3, CH_2Cl_2) upon mixing stoichiometric amounts of ligand 1 with $AgPF_6$ in CH_2Cl_2 . Complex 2- PF_6 was also prepared by extraction of silver nitrate from water using **1**, followed by anion metathesis with KPF_6 and chromatography. The ML stoichiometry was confirmed by elemental analysis and by mass spectrometry (ES), which revealed a base peak at 1301.6 amu ($[1+Ag]^+$). ¹³C NMR showed that **1** and 2 -PF₆ were both in the cone conformation⁷ (Ar- CH_2 -Ar signals at 31.40 ppm and 31.46, 32.42 ppm, respectively). Upon complexation, the ¹ H NMR spectrum of **1** was strongly modified (Fig. 1). Using COSY NMR experiment, it was observed that the OCH_{2} bipyridine and the $OCH_2-C_6H_5$ signals which respectively appear as singlets at 5.20 and 4.77 ppm for **1**, became two AB systems at 5.20, 6.08 ppm $(J_{AB} = 12.9$ Hz) and 3.92, 4.14 ppm $(J_{AB} = 11.8 \text{ Hz})$ for 2-PF₆. This observation results from the chiral pro-helicoidal arrangement of the two bipyridine units around the metallic centre.

The natural abundance ${}^{1}H-{}^{15}N$ HMBC experiment^{5d} adapted to 2 -PF₆ (Fig. 2) showed two ¹⁵N signals at

276.7 ppm (N correlated to Me) and 269.9 ppm (N correlated to O-C H_2 -), versus internal ¹⁵N Bruker reference. With respect to the free ligand, the strong upfield shifts of ca. 40 and 42 ppm, similar to those obtained with parent copper(I) complexes, indicate that the bipyridines were indeed chelating the silver cation.

Upon reaction of 1 with $Pb(NO₃)₂$, no isolable complex could be obtained, suggesting the absence of competition between Pb^{2+} and Ag^+ cations during the extraction process. The extraction experiments were carried out in solution; AgNO₃ and Pb(NO₃)₂ were dissolved in various ratios in water, and treated with a solution of **1** in CHCl₃ or CH₂Cl₂.

For the first series of experiments, the Ag/Pb molar ratio varied from 1 to 1:10000, and the extraction was performed with a default of 1 versus Ag⁺. The mixture was stirred at rt during 2 h, then the organic phase was separated and evaporated to dryness. The residue was dissolved in CH_2Cl_2 and treated with an excess of KPF_6 . The resulting complex 2-PF₆ was isolated by chromatography over alumina and checked by ¹H NMR. The results given in Table 1 show that the extraction of $Ag⁺$ was quantitative, with an average yield of 95%. The concentration of 1 in CHCl₃ as well as the concentrations of Ag^+ and Pb^{2+} cations in the aqueous phase did not affect the extraction results.

Figure 2. Natural abundance ¹H-¹⁵N HMBC spectrum of 1.

Table 1. Extraction operating data—first series of experiments

Ag/Pb	$Pb(NO_3)$, mg (mol)	$AgNO3$ mg (10^{-5} mol)	$H2O$ (ml)	$[Pb]$; $[Ag]$	1 mg (10^{-3} M) (10^{-5} mol)		CHCl ₃ (ml) [1] $(10^{-3} M)$ Ag/1 2-PF ₆ (mg)		(10^{-5} mol)	Yield $(\%$
$\mathbf{1}$	28.90 (8.7×10^{-5})	15.00(8.8)	-10	8.7:8.8	50(4.2)	25	1.70	2.1	56 (3.9)	93
1/10	28.70 (8.66×10^{-5})	1.80(1.06)	10	8.7: 1.06	10(0.84)	10	0.84	1.3	$11.2(0.78)$ 93	
1/100	2790 (8.4×10^{-3})	15.70 (9.24)	50	168: 1.85	100(8.4)	30	2.80	1.1	115(8.0)	95
1/1000	27750 (8.35×10^{-2})	14.90(8.77)	100	835; 0.88	100(8.4)	20	4.20	1.0	114(7.9)	94
	$1/10000$ 27750 (8.35×10^{-2})	1.80(1.06)	100	838: 0.10	10(0.84)	10	0.84	1.3	12(0.83)	98

A second set of experiments⁸ was carried out in order to develop a continuous extraction process. It was performed in a decantation funnel containing an aqueous solution of $Pb(NO₃)₂$ at 600 g.l⁻¹, at the limit of saturation at rt, charged before extraction with AgNO₃. The initial Ag^{+}/Pb^{2+} molar ratio of ca. 1:30000 was maintained at each addition of $AgNO₃$, assuming that the extraction was complete. The organic phase (CH_2Cl_2) was charged with 15 equivalents of 1 versus silver, in order to perform 15 successive extractions; thus, the ligand was in excess during all experiments, except for the last one. The mixture was shaken for 30 seconds, then allowed to equilibrate for 15 minutes. TLC monitoring (Al_2O_3, CH_2Cl_2) showed a regular loss of 1 to the benefit of the $AgNO_3$ complex. All the ligand was complexed with the last aliquot of metal. The aqueous phase was washed with CH_2Cl_2 , and the combined organic phases were concentrated, treated with KPF_6 then purified by chromatography to give **2-PF₆** in ca. 90% yield. The ligand was quantitatively recycled in CH_2Cl_2 by treatment with NH₄OH.

Conclusion

The binding ability of the new podand 1^9 towards Ag^+ was studied, affording the stable mononuclear complex 2 -PF₆.¹⁰ We suggested that the tetrahedral mode of binding could be a driving force in the selective extraction of Ag^+ in the presence of Pb^{2+} . The experimental results showed that the extraction was selective, quantitative and rapid, authorising a continuous process; this last point, the improvement of silver and ligand recovering processes, as well as competitive extractions of $Ag⁺$ in the presence of other metal cations are currently under investigation.

Acknowledgements

We are grateful to the MRES for financial support, especially J.-O.D. for a Ph.D. fellowship; to SAFAS (Monaco) and Bruker S.A. for UV spectroscopy and WinNMR facilities, respectively.

References

1. Guerlet, J.-P.; Pianelli, F., Traité de Métallurgie, M 2388, Techniques de l'Ingénieur Ed., Paris, 1992.

- 2. (a) Wieser, C.; Dieleman, D. B.; Matt, D. *Coord*. *Chem*. *Rev*. **1997**, 165, 93; (b) Yordanov, A. T.; Roundhill, D. M. *Coord*. *Chem*. *Rev*. **1998**, 170, 93–124.
- 3. Rao, P.; Enger, O.; Graf, E.; Hosseini, M. W.; De Cian, A.; Fischer, J. *Eur*. *J*. *Inorg*. *Chem*. **2000**, ⁷, 1503–1508.
- 4. For example: (a) Roundhill, D. M. In *Prog*. *Inorg*. *Chem*.; K. D. Karlin, Ed.; John Wiley and Sons, 1995; 43, 533–592; (b) Yordanov, A. T.; Falana, O. M.; Koch, A. F.; Roundhill, D. M. *Inorg*. *Chem*. **1997**, 36, 6468– 6471; (c) Yordanov, A. T.; Whittlesey, B. R.; Roundhill, D. M. *Inorg*. *Chem*. **1998**, 37, 3526–3531.
- 5. For example: (a) Beer, P. D.; Martin, J. P.; Drew, M. G. B. *Tetrahedron*, **1992**, 48, 9917–9928; (b) Regnouf-de-Vains, J.-B.; Lamartine, R. *Helv*. *Chim*. *Acta* **1994**, ⁷⁷, 1817–1825; (c) Regnouf-de-Vains, J.-B.; Lamartine, R.; Fenet, B.; Bavoux, C.; Thozet, A.; Perrin, M. *Helv*. *Chim*. *Acta* **1995**, 78, 1607–1619; (d) Pellet-Rostaing, S.; Regnouf-de-Vains, J.-B.; Lamartine, R.; Fenet, B. *Inorg*. *Chem*. *Commun*. **1999**, ², 4–7.
- 6. Ward, M. D.; Couchman, S. M.; Jeffrey, J. C. *Acta Crystallogr*., *Sect*. *C*. **1998**, 54, 1820–1823.
- 7. Jaime, C.; de Mendoza, J.; Prados, P.; Nieto, P. M.; Sanchez, C. *J*. *Org*. *Chem*. **1991**, 56, 3372–3376.
- 8. Aqueous phase: 100 ml H_2O ; Pb(NO₃)₂: 60 g (1.8 mol l⁻¹); AgNO₃: 1.0 mg (5.9×10⁻⁵ mol l⁻¹); [Ag]/[Pb]: 1/ 30500; organic phase: 20 ml of CH_2Cl_2 ; initial mass of 1: 105 mg (8.8×10−⁵ mol)
- 9. Compound **1**: White powder. Mp: 157°C. IR: 1570 cm−¹ (C-N), 2960 (C-H). UV-vis (CH₂Cl₂): 290 (31300). ¹H NMR (300 MHz, CDCl₃): 1.00 (s, 18H, Me_3C); 1.18 (s, 18H, *Me*3C); 2.63 (s, 6 H, *Me*bpy); 2.93,4.28 ('q', AB, J_{AB} =12.9, 8H, Ar-C*H*₂-Ar); 4.77 (s, 4H, -OC*H*₂C₆H₅); 5.20 (s, 4 H, -OC*H*2bpy); 6.67 (s, 4H, ArH); 6.88 (s, 4H, ArH); 7.06–7.29 (m, 12H, $C_6H_5^{2+}$ H of bpy); 7.44 (t, *J*=7.7, 2H, bpy); 7.57 (t, *J*=7.7, 2H, bpy); 7.65 (d, *J*=6.5, 2H, bpy); 8.00 (d, *J*=8.1, 2H, bpy); 8.26 (d, $J=7.7$, 2H, bpy). ¹³C NMR (75 MHz, CDCl₃): 24.66 (*Me* bpy); 31.35, 31.57 (*Me*₃C); 31.40 (Ar-*CH₂*-Ar); 33.76, 33.89 (Me₃C); 77.05, 77.49 (OCH₂C₆H₅, OCH₂bpy); 118.33, 119.48, 122.99, 123.47, 124.92, 125.24, 127.51, 127.95, 129.26, 136.91, 137.04 (C(1), C(2), C(3), C(4), C(5) of C_6H_5 ; C_m of Ar; C(3), C(4), C(5), C(3'), C(4'), C(5') of bpy); 133.34, 134.30, 138.06, 144.47, 144.58, 152.37, 153.37, 155.21, 155.90, 157.62, 157.88 (C(6) of C₆H₅, C_o,_p,_{ipso} of Ar, C(2), C(2'), C(6), C(6') of bpy). ES-MS (pos. mode): 1193.7 ([1+H]⁺), 1215.7 ([1+Na]⁺), 597.7 ($[1+2 \text{ H}]^{2+}/2$). Anal. calcd for $C_{82}H_{88}N_4O_4$ (1193.64): C, 82.51; H, 7.43; N, 4.69; O, 5.36. Found: C, 82.47; H, 7.24; N, 4.77; O, 5.68.
- 10. Compound 2 -PF₆: White powder. Mp: 275°C; IR: 1576 (C-N), 2955 (CH), 843 (PF₆⁻). UV–vis (CH₂Cl₂): 291

(36100). ¹H NMR (300 MHz, CDCl₃): 0.78 (s, 18H, *t*-Bu); 1.35 (s, 18H, *t*-Bu); 2.22 (s, 6H, CH3bpy); 2.74, 3.90 ('q', AB, *JAB*=13.2, 4H, Ar-C*H*2-Ar); 2.80, 3.52 ('q', AB, *JAB*=12.5, 4H, Ar-C*H*2-Ar); 3.94, 4.15 ('q', AB, J_{AB} =11.8, 4H, OC $H_2C_6H_5$); 5.22, 6.10 ('q', AB, J_{AB} = 12.9, 4H, OC*H*2bpy); 6.32 (s, 2H, ArH); 6.39 (s, 2H, ArH); 6.67 (d, J=8.0, 4H, C₆H₅); 6.97 (t, J=8.0, 4H, C_6H_5); 7.03 (t, J=8.0, 2H, C_6H_5); 7.10 (d, J=3.0, 4H, ArH); 7.26 (d, *J*=7.7, 2H, Hpy_{CH2}); 7.44 (d, *J*=7.7, 2H, Hpy_{Me}); 7.97 (t, *J*=7.7, 2H, Hpy_{Me}); 8.12 (t, *J*=7.7, 2H, Hpy_{CH2}); 8.19 (d, $J=8.1$, 2H, Hpy_{Me}); 8.40 (d, $J=8.1$, 2H, Hpy_{CH2}). ¹³C NMR (75 MHz, CDCl₃): 25.56 (*Me* bpy); 31.08, 31.73 (*Me*₃C); 31.46, 32.42 (Ar-C*H*₂-Ar); 33.60, 34.21 (Me₃*C*); 77.49 (O*C*H₂C₆H₅); 81.21 (O*C*H2bpy); 120.37, 122.56, 122.60, 124.21, 124.87, 125.62, 125.98, 126.01, 126.93, 127.77, 127.93, 128.91, 139.64, 139.79 (C(1), C(2), C(3), C(4), C(5) of C_6H_5 ; C_m of Ar; C(3), C(4), C(5), C(3'), C(4'), C(5') of bpy); 131.20, 131.49, 134.58, 136.14, 137.13, 144.56, 146.02, 151.41, 151.45, 151.56, 151.59, 152.01, 153.43, 158.27, 158.28, 158.30 (C(6) of C₆H₅, C_o,_p,_{ipso} of Ar, C(2), C(2'), C(6), $C(6')$ of bpy). ES-MS (pos. mode): 1301.6 ($[1+Ag(I)]^+$). Anal. calcd for $C_{82}H_{88}AgF_6N_4O_4P$ (1446.46): C, 68.09; H, 6.13; N, 3.87; found: C 68.26, H, 6.15; N 4.27.

. .